Building Introduction Existing Mechanical

Mechanical Depth

Proposed Design Technical Analysis Cost

Construction Breadth

Geothermal Design

Conclusion

Summary & Acknowledgements

PennState Lehigh Valley Campus Center Valley, PA

Michael Joaquino | Mechanical Option B.A.E. Program

AE Senior Thesis Presentation Advisor: Dr. Donghyun Rim April 11th, 2017

Penn State Lehigh Valley – University Education Use Building

Introduction

Building Introduction Existing Mechanical

Mechanical Depth

Proposed Design Technical Analysis Cost

Construction Breadth

Geothermal Design

Conclusion

Summary & Acknowledgements

General Information

Gross Building: 96,274 SF

Construction: Spring 2002 – Fall 2003

Purchased by Penn State: 2009 - \$12 Million USD

Occupancy: 2000 Students

Building Features: Classrooms, Offices, Open Lounges, Computer Labs, Gym, Music Room, library, etc.

Building Introduction Existing Mechanical

Mechanical Depth

Proposed Design Technical Analysis Cost

Construction Breadth

Geothermal Design

Conclusion

Summary & Acknowledgements

Existing Mechanical System

- (3) Packaged Roof-top Units with VAV Electric Reheat
 - Cooling Internal DX-Cooling Cycle
 - Heating Gas Fired Furnace

(77) VAV with Electric Reheat

Serves individual zones with modulating air dampers to accommodate the room loads.

Existing Mechanical Specification	Cooling (kBtu-h)	Heating (kBtu-h)	CFM	O/A Min.
RTU-1	1492	2350.8	40740	10725
RTU-2	751.6	1059.2	19770	4125
RTU-3	1512	2365.4	33748	14415

Building Overview – RTU placement

Building Introduction Existing Mechanical

Mechanical Depth

Proposed Design Technical Analysis Cost

Construction Breadth

Geothermal Design

Conclusion

Summary & Acknowledgements

Existing Mechanical System

- (3) Packaged Roof-top Units with VAV Electric Reheat
 - Cooling Internal DX-Cooling Cycle
 - Heating Gas Fired Furnace

Building Overview – RTU placement

Building Introduction Existing Mechanical

Mechanical Depth

Proposed Design Technical Analysis Cost

Construction Breadth

Geothermal Design

Conclusion

Summary & Acknowledgements

Design Motivation

- **Energy Efficient**
- **Economic Feasibility**
- **Functionality**

~620 SF

Design Constraints

- Limited MER Space
- No existing CHW/HHW Plumbing

Building Overview – RTU placement

Design Motivation

Introduction

Building Introduction Existing Mechanical

Mechanical Depth

Proposed Design Technical Analysis Cost

Construction Breadth

Geothermal Design

Conclusion

Summary & Acknowledgements

Energy Efficient

- **Economic Feasibility**
- **Functionality**

~620 SF

Design Constraints

- Limited MER Space
- No existing CHW/HHW Plumbing

Michael Joaquino

Penn State Lehigh Valley Building

Penn State University – Architecture Engineering

Design Motivation

Introduction

Building Introduction Existing Mechanical

Mechanical Depth

Proposed Design Technical Analysis Cost

Construction Breadth

Geothermal Design

Conclusion

Summary & Acknowledgements

Energy Efficient

- **Economic Feasibility**
- **Functionality**

~620 SF

Design Constraints

- Limited MER Space
- No existing CHW/HHW Plumbing

Imagery ©2017 Google, Map data ©2017 Google 100 ft

Building Introduction Existing Mechanical

Mechanical Depth

Proposed Design Technical Analysis Cost

Construction Breadth

Geothermal Design

Conclusion

Summary & Acknowledgements

Design Motivation

Centralized Geothermal System Geothermal GSHP + (Distributed System)

- Utilizing the ground as a heat sink & source
- Potential for large energy savings
- Minimal disruption to academic schedule

Ground Loop Incentives

- Lower Operating Costs
- Lower Carbon Emissions
- Long Life Expectancy
- Efficiency
- Heat-recovery system
- High-efficiency heat pumps
- Utilization of earth temperature

Building Introduction Existing Mechanical

Mechanical Depth

Proposed Design Technical Analysis Cost

Construction Breadth

Geothermal Design

Conclusion

Summary & Acknowledgements

Design Motivation

Centralized Geothermal System Geothermal GSHP + (Distributed System)

- Utilizing the ground as a heat sink & source
- Potential for large energy savings
- Minimal disruption to academic schedule

IES Virtual Environment

Building Introduction Existing Mechanical

Mechanical Depth

Proposed Design **Technical Analysis** Cost

Construction Breadth

Geothermal Design

Conclusion

Summary & Acknowledgements

Design Motivation

Centralized Geothermal System Geothermal GSHP + (Distributed System)

- Utilizing the ground as a heat sink & source
- Potential for large energy savings
- Minimal disruption to academic schedule

IES Virtual Environment – DOAS with Geothermal Ground Loop

Proposed System	Unit
Central Plant	GSHP
Zone	Split System Heat Pumps

Building Introduction Existing Mechanical

Mechanical Depth

Proposed Design **Technical Analysis** Cost

Construction Breadth

Geothermal Design

Conclusion

Summary & Acknowledgements

Design Motivation

Centralized Geothermal System Geothermal GSHP + (Distributed System)

- Utilizing the ground as a heat sink & source
- Potential for large energy savings
- Minimal disruption to academic schedule

	DOA	\S 1	DOA	AS 2	DOA	4S 3
Proposed System	CFM	10725	CFM	4125	CFM	14415
Coil-Sizes	CC	HC	CC	HC	CC	HC
kBTU/Hr	676.1	591.5	246.8	243.9	913.3	826.1
Tons	56.3	49.3	20.6	20.3	76.1	68.8

IES Virtual Environment – DOAS with Geothermal Ground Loop

Proposed System	Unit
Central Plant	GSHP
Zone	Split System Heat Pumps

Building Introduction Existing Mechanical

Mechanical Depth

Proposed Design Technical Analysis Cost

Construction Breadth

Geothermal Design

Conclusion

Summary & Acknowledgements

Geothermal System – Distributed System

Winter – Heating (Heat Source)

Summer – Cooling (Heat Sink)

Cooling Only

Building Introduction Existing Mechanical

Mechanical Depth

Proposed Design Technical Analysis Cost

Construction Breadth

Geothermal Design

Conclusion

Summary & Acknowledgements

Geothermal System – Distributed System

Summer – Cooling (Heat Sink)

Heating Only

Building Introduction Existing Mechanical

Mechanical Depth

Proposed Design Technical Analysis Cost

Construction Breadth

Geothermal Design

Conclusion

Summary & Acknowledgements

Centralized Geothermal System – Bidirectional Cascade System

- Winter Heating (Heat Source)
- Spring/Fall Capable of cooling & heating
 - Summer Cooling (Heat Sink)
 - Heat Recovery Chiller

Bidirectional Cascade System

("Central Geothermal System Design and Control" – Trane Commercial.)

Centralized Geothermal System – Bidirectional Cascade System

Introduction

Building Introduction Existing Mechanical

Mechanical Depth

Proposed Design Technical Analysis Cost

Construction Breadth

Geothermal Design

Conclusion

Summary & Acknowledgements

Centralized Geothermal System **Building Cooling & Heating Demand**

Bidirectional Cascade System

Heating Dominate

("Central Geothermal System Design and Control" – Trane Commercial.)

Building Introduction Existing Mechanical

Mechanical Depth

Proposed Design Technical Analysis

Cost

Construction Breadth

Geothermal Design

Conclusion

Summary & Acknowledgements

Comparing Heating & Cooling Performance

- Geothermal with Split System
- Geothermal with Chiller/Boiler
- Existing Mechanical

Building Introduction Existing Mechanical

Mechanical Depth

Proposed Design Technical Analysis Cost

Construction Breadth

Geothermal Design

Conclusion

Summary & Acknowledgements

Comparing Heating & Cooling Performance

Geothermal with Split System

- Geothermal with Chiller/Boiler
- Existing Mechanical

Annual Electric Heating	GSHP+CHW/HHW	GSHP+HP	Baseline
Summed total (kWh)	89,554.2	269,383.2	814,526.9
Difference %	0.89	0.76	-

Building Introduction Existing Mechanical

Mechanical Depth

Proposed Design **Technical Analysis** Cost

Construction Breadth

Geothermal Design

Conclusion

Summary & Acknowledgements

Comparing Heating & Cooling Performance

...Fossil Fuel Consumption

- Geothermal with Split System
- Geothermal with Chiller/Boiler
- Existing Mechanical

Annual Electricity Distribution – Proposed System

Comparing Heating & Cooling Performance

Geothermal with Split System

...In Summary

Introduction

Building Introduction Existing Mechanical

Mechanical Depth

Proposed Design **Technical Analysis** Cost

Construction Breadth

Geothermal Design

Conclusion

Summary & Acknowledgements

Geothermal with Chiller/Boiler

Existing Mechanical

Annual Total	boilers energy (MBtu)	chillers energy (MBtu)	DX cooling systems energy (MBtu)	EHC heating energy (MBtu)
Geothermal+ CHW/HHW	9,561.95	480.867	0.00	0
Geothermal+ HP	8,388.67	310.931	247.92	0
Baseline	8,388.67	0	967.48	2,777.137

Annual Electricity Distribution – Proposed System

Michael Joaquino

Building Introduction Existing Mechanical

Mechanical Depth

Proposed Design Technical Analysis Cost

Construction Breadth

Geothermal Design

Conclusion

Summary & Acknowledgements

Cost Analysis

Annual Heating/Cooling	Fossil Fue	el (Mbtu)	Electric (Mbtu)			Total	
	Heating	Cooling	Heating	Cooling	Heating	Cooling	
seline	-	-	3411.93	967.48	\$ 90,994.2	\$ 25,802.1	\$ 107,761.22
ech. Proposed Geothermal	-	-	657.49	558.86	\$ 17,534.9	\$ 14,904.4	\$ 32,439.27
nditional Chiller-Boiler	1568.54	-	918.47	462.17	\$ 41,198.7	\$ 12,325.9	\$ 53,524.56
. Geothermal+EWC/Boiler	1173.29	-	305.34	480.87	\$ 20,637.7	\$ 12,824.5	\$ 33,462.21

Cost Analysis

Introduction

Building Introduction Existing Mechanical

Mechanical Depth

Proposed Design Technical Analysis Cost

Construction Breadth

Geothermal Design

Conclusion

Summary & Acknowledgements

Annual Heating/Cooling	Fossil Fuel (Mbtu) Electric (Mbtu)			Total			
	Heating	Cooling	Heating	Cooling	Heating	Cooling	
Baseline	-	-	3411.93	967.48	\$ 90,994.2	\$ 25,802.1	\$ 107,761.22
Mech. Proposed Geothermal	-	-	657.49	558.86	\$ 17,534.9	\$ 14,904.4	\$ 32,439.27
raditional Chiller-Boiler	1568.54	-	918.47	462.17	\$ 41,198.7	\$ 12,325.9	\$ 53,524.56
Alt. Geothermal+EWC/Boiler	1173.29	-	305.34	480.87	\$ 20,637.7	\$ 12,824.5	\$ 33,462.21

Vertical Well –	Proposed System			Original		
Payback Calc						
Operating Cost	\$	32,439.27		\$	107,761.22	
Yearly Savings	\$	75,321.95			-	
Equipment & Installation	\$ 3	3,353,074.40		\$ 2	2,642,025.00	
Total (Years)	9.4					

rizontal Well ayback Calc	Proposed System			Original		
erating Cost	\$	32,439.27		\$	107,761.22	
arly Savings	\$	75,321.95			-	
uipment & Installation	\$	2,277,274.40		\$	2,642,025.00	
tal (Years)			-4.8			
arly Savings uipment & Installation tal (Years)	\$ \$	•	-4.8	\$	- 2,642,025.00	

Construction Layout – Geothermal System

Introduction

Building Introduction Existing Mechanical

Mechanical Depth

Proposed Design Technical Analysis Cost

Construction Breadth

Geothermal Design

Conclusion

Summary & Acknowledgements

Silt Loam vs. Limestone

Geothermal Well types Horizontal vs Vertical

Geothermal Cost	Vertical	Horizontal
\$/Ft.	\$16	\$4
Ft. Req.	47,211.3	54,370.2
Cost	\$755,380.8	217.480.8

Proposed Geothermal Location

Heating	Limestone	Silt Loam
Lh [ft]	41,053.3	47,278.43
safety 15%	47,211.29	54,370.19

Construction Layout – Geothermal System

Introduction

Building Introduction Existing Mechanical

Mechanical Depth

Proposed Design Technical Analysis Cost

Construction Breadth

Geothermal Design

Conclusion

Summary & Acknowledgements

Silt Loam vs. Limestone

Geothermal Well types Horizontal vs Vertical

eothermal ost	Vertical	Horizontal
/Ft.	\$16	\$4
t. Req.	47,211.3	54,370.2
ost	\$755,380.8	217,480.8

Table 5 Thermal Properties of Selected Soils, Rocks, and Bore Grouts/Fills

	Dry Density, lb/ft ³	Conductivity, Btu/h·ft·°F	Diffusivity, ft²/day
ils			
avy clay, 15% water	120	0.8 to 1.1	0.45 to 0.65
% water	120	0.6 to 0.8	0.5 to 0.65
ght clay, 15% water	80	0.4 to 0.6	0.35 to 0.5
% water	80	0.3 to 0.5	0.35 to 0.6
avy sand, 15% water	120	1.6 to 2.2	0.9 to 1.2
% water	120	1.2 to 1.9	1.0 to 1.5
ght sand, 15% water	80	0.6 to 1.2	0.5 to 1.0
% water	80	0.5 to 1.1	0.6 to 1.3
cks			
anite	165	1.3 to 2.1	0.9 to 1.4
nestone	150 to 175	1.4 to 2.2	0.9 to 1.4
ndstone		1.2 to 2.0	0.7 to 1.2
ale, wet	160 to 170	0.8 to 1.4	0.7 to 0.9
lry		0.6 to 1.2	0.6 to 0.8
outs/Backfills			
ntonite (20 to 30% solie	ds)	0.42 to 0.43	
at cement (not recomm	ended)	0.40 to 0.45	
% bentonite/80% SiO ₂	sand	0.85 to 0.95	
% bentonite/85% SiO ₂ :	sand	1.00 to 1.10	
% bentonite/90% SiO ₂ :	sand	1.20 to 1.40	
% concrete/70% SiO ₂ s	and,	1.20 to 1.40	
. plasticizer			
was Kayanaugh and Paffa	eto (1007)		

Source: Kavanaugh and Rafferty (1997).

ASHRAE 2007 Fundamentals: HVAC Applications

Proposed Geothermal Location

Heating	Limestone	Silt Loam
Lh [ft]	41,053.3	47,278.43
safety 15%	47,211.29	54,370.19

Building Introduction Existing Mechanical

Mechanical Depth

Proposed Design **Technical Analysis** Cost

Construction Breadth

Geothermal Design

Conclusion

Summary & Acknowledgements

Construction Layout – Geothermal System

Silt Loam vs. Limestone

Geothermal Well types Horizontal vs Vertical

Approximately 47,000 Ft. of Bore

- 11x11 Grid
- 400' Bore Depth

Vall Depth ft)	•	Number of Wells
100	47,211.3	472
200	47,211.3	236
300	47,211.3	158
400	47,211.3	118

Proposed Geothermal Location

Summary & Conclusion

Introduction **Building Introduction Existing Mechanical** Mechanical Depth Proposed Design Technical Analysis Cost Construction Breadth Geothermal Design Conclusion Summary & Acknowledgements

Annual System Energy

■ Geothermal+HP ■ Baseline

Summary & Conclusion

Introduction

Building Introduction Existing Mechanical

Mechanical Depth

Proposed Design Technical Analysis Cost

Construction Breadth

Geothermal Design

Conclusion

Summary & Acknowledgements

Recommendation

Summary & Conclusion

Introduction

Building Introduction Existing Mechanical

Mechanical Depth

Proposed Design Technical Analysis Cost

Construction Breadth

Geothermal Design

Conclusion

Summary & Acknowledgements

Acknowledgements

- Dr. Donghuyn Rim Thesis Advisor
- Penn State & the Office of Physical Plant
 - Friends and Family
- **PSU AE Department & Class of 2017**

Questions

Introduction

Building Introduction Existing Mechanical

Mechanical Depth

Proposed Design Technical Analysis Cost

Construction Breadth

Geothermal Design

Conclusion

Summary & Acknowledgements

	DOA	DOAS 1		DOAS 2		DOAS 3	
Proposed System	CFM	10725	CFM	4125	CFM	14415	
Coil-Sizes	CC	HC	CC	HC	CC	НС	
kBTU/Hr	676.1	591.5	246.8	243.9	913.3	826.1	
Tons	56.3	49.3	20.6	20.3	76.1	68.8	

Building Introduction

Existing Mechanical

Mechanical Depth

Proposed Design

Technical Analysis

Cost

Construction Breadth

Geothermal Design

Conclusion

Summary & Acknowledgements

Appendix

Appendix

Annual Heating/Cooling	Fossil Fue	el (Mbtu)	Electri	c (Mbtu)		Cost	Total
	Heating	Cooling	Heating	Cooling	Heating	Cooling	
Baseline	-	-	3411.93	967.48	\$ 90,994.2	\$ 25,802.1	\$ 107,761.22
Mech. Proposed Geothermal	-	-	657.49	558.86	\$ 17,534.9	\$ 14,904.4	\$ 32,439.27
Traditional Chiller-Boiler	1568.54	-	918.47	462.17	\$ 41,198.7	\$ 12,325.9	\$ 53,524.56
Alt. Geothermal+EWC/Boiler	1173.29	-	305.34	480.87	\$ 20,637.7	\$ 12,824.5	\$ 33,462.21

Vertical Well –	Proposed System		Original	
Payback Calc				
Operating Cost	\$	32,439.27		\$ 107,761.22
Yearly Savings	\$	75,321.95		-
Equipment & Installation	\$ 3	3,353,074.40		\$ 2,642,025.00
Total (Years)			9.4	

Appendix – Heat and Cooling Load

Building Introduction Existing Mechanical

Mechanical Depth

Proposed Design Technical Analysis Cost

Construction Breadth

Geothermal Design

Conclusion

Summary & Acknowledgements

Appendix

System Electricity - Cooling

Appendix - Annual Loads

Introduction

Building Introduction

Existing Mechanical

Mechanical Depth

Proposed Design

Technical Analysis

Cost

Construction Breadth

Geothermal Design

Conclusion

Summary & Acknowledgements

Appendix

rstem Cooling Coil - eothermal Supplied	Total load (MBtu)		
ooling Coil	CC000777	CC000779	CC000781
ate	[Proposed- DOASx3-	[Proposed-	DOASx3-
n	0	0	0
eb	0	0	0
ar	0.091	0.07	0.046
or	5.325	2.093	7.22
ay	31.03	12.269	43.36
n	78.853	30.122	110.808
l	123.913	48.856	172.944
ıg	107.06	40.731	149.675
ep	70.99	27.024	98.829
ct	15.893	6.244	22.01
ov	6.27	2.373	8.782
ec	0	0	0
ımmed total	439.425	169.782	613.673
otal Annual MBtu	1222.88		
otal Annual Tons	101906.67		
otal Annual kBTU/Hr	139.60		

System Heating Coil - Geothermal Supplied	Sonsible load	Sensible load	Sonsible load
ocomerma supplied	(MBtu)	(MBtu)	(MBtu)
Heating Coil	HC002820	HC002822	HC002824
	p_3.18.17	p_3.18.17	p_3.18.17
	[Proposed- DOASx3-	[Proposed- DOASx3-	[Proposed- DOASx3-
Date	GSHP1.UJ.aps	GSHP1.0].aps	GSHP1.UJ.aps
Jan	109.231	45.041	152.924
Feb	92.52	38.15	129.528
Mar	60.249	24.843	84.349
Apr	27.274	11.246	38.183
May	4.479	1.847	6.271
Jun	0.098	0.04	0.137
Jul	0	0	0
Aug	0.006	0.003	0.009
Sep	0.318	0.131	0.445
Oct	15.453	6.372	21.634
Nov	45.109	18.6	63.152
Dec	90.328	37.246	126.46
Summed total	445.066	183.519	623.093
Total Annual MBtu	1251.678		
Total Annual Tons	104306.50		
Total Annual kBTU/Hr	142.89		

Total System				
Energy	Total system	Total system	Total system	Total system
	energy	energy	energy	energy
	(MBtu)	(MBtu)	(MBtu)	(MBtu)
	- —	p_3.19.17	· —	p_3.16.17
	Proposed2.0.	Alternative	- •	Baseline.aps
	aps	Proposed.ap		
		S	GSHP1.0].aps	
	Geothermal+		Geothermal+	
ite	ChillerBoiler	ChillerBoiler	HP	Baseline
n	1030.38	1280.64	863.841	1339.67
b	932.74	1147.46	797.172	1199.06
ar	955.56	1095.86	848.004	1157.32
or	846.48	909.42	782.836	1004.22
ay	776.46	783.46	755.547	942.43
n	833.61	824.98	828.633	1019.70
	883.43	865.75	881.603	1059.81
ıg	861.46	845.86	856.314	1052.59
р	827.67	818.72	817.083	1029.44
ct	810.15	840.29	755.801	986.09
ΟV	906.42	1006.67	806.934	1102.37
ec	1045.53	1251.64	890.097	1310.17
mmed total	10709.88	11670.73	9883.867	13202.87
vs Baseline	0.19			

Appendix – Geothermal Calcs

Introduction

Building Introduction

Existing Mechanical

Mechanical Depth

Proposed Design

Technical Analysis

Cost

Construction Breadth

Geothermal Design

Conclusion

Summary & Acknowledgements

Appendix

ooling	Limestone	Silt Loam	Difference
sc	1.04	1.04	
LFm	1	1	
a [Btu/Hr]	-133713.1	-133713.1	
ga	0.201	0.225	
gd	0.120	0.108	
gm	0.225	0.201	
b	0.09	0.09	
3	52	52	
0	-1.8	-1.8	
LT	78	78	
LT	85	85	
lc [Btu/Hr]	-1532563	-1532563	
Vc [W]	4340	4340	
c [ft^2]	25478.62	23562.02	-1916.60
afety 15%	29300.41	27096.33	

Heating	Limestone	Silt Loam	Difference
Fsc	1.04	1.04	
PLFm	1	1	
Qa [Btu/Hr]	136409	136409.1	
Rga	0.201	0.225	
Rgd	0.120	0.108	
Rgm	0.225	0.201	
Rb	0.09	0.09	
tg	52	52	
tp	1.8	1.8	
ELT	38	38	
LLT	33	33	
qlc [Btu/Hr]	1663419	1663419	
Wc [W]	4340	4340	
Lh [ft^2]	41053.2971	47278.43	6225.13
	47211.29	54370.19	

 \mathbf{F}_{sc} = short-circuit heat loss factor

L_c = required bore length for cooling, ft.

 L_h = required bore length for heating, ft.

PLF_m=part-load factor during design month

 \mathbf{q}_{a} = net annual average heat transfer to ground, Btu/h.

 q_{lc} = building design cooling block load, Btu/h.

q_{lh} =building design heating block load, Btu/h.

 \mathbf{R}_{ga} = effective thermal resistance of ground (annual pulse), ft-h-°F /Btu.

 \mathbf{R}_{gd} = effective thermal resistance of ground (peak daily pulse: 1 hr min, 4 – 6 hr recommended), ft-h-°F/Btu.

 \mathbf{R}_{gm} = effect thermal resistance of ground (monthly pulse), ft-h-°F /Btu.

 $\mathbf{R_h}$ = thermal resistance of bore, ft-h-°*F*/Btu.

 $\mathbf{t_g}$ = undisturbed ground temperature, °F

 $\mathbf{t_n}$ = temperature penalty for interference of adjacent bores, °F

t_{wi} = liquid temperature at heat pump inlet, °F

 \mathbf{t}_{wo} = liquid temperature at heat pump outlet, °F

W_c = system power input at design cooling load, W

W_h = system power input at design heating load, W

Building Introduction

Existing Mechanical

Mechanical Depth

Proposed Design Technical Analysis

Cost

Construction Breadth

Geothermal Design

Conclusion

Penn State Lehigh Valley Building

Summary & Acknowledgements

Appendix

Michael Joaquino

Appendix – Z_Proposal

Annual Heating/Cooling	Fossil Fuel (Mbtu)		Electric (Mbtu)		Cost		Total
	Heating	Cooling	Heating	Cooling	Heating	Cooling	
Baseline	741.313	-	2777.14	967.48			
					\$ 81,959.2	\$ 25,802.1	\$ 107,761.22
Mech. Proposed	-	-	657.49	558.86			
					\$ 17,534.9	\$ 14,904.4	\$ 32,439.27
Chiller-Boiler	1568.54	-	918.47	462.17			
					\$ 41,198.7	\$ 12,325.9	\$ 53,524.56
Geothermal w/	1173.29	-	305.34	480.87			
CHW/HW					\$ 20,637.7	\$ 12,824.5	\$ 33,462.21
Geothermal+VAV(Rehe	_	-					
at)	_		1512.396	924.719	\$ 40,334.8	\$ 24,661.8	\$ 64,996.54
Sth Alt. System		-					
	539.384		-	510.285	\$ 5,744.0	\$ 13,609.0	\$ 19,353.05

Annual System Energy

Penn State University – Architecture Engineering ■ Geothermal Cooling + HHW ■ Geothermal+HP ■ Baseli	Penn State University – Architecture Engineering	■ Geothermal Cooling + HHW	■ Geothermal+HP	■ Baseline
--	--	----------------------------	-----------------	------------

Limestone Silt Loam e Cooling **PLFm** [Btu/Hr] Rgd

[Btu/Hr]

Wc [W]

Lc [ft]

safety 15%

1.04

-44.61

0.201

0.120

0.225

0.09

52

-1352750 -1352750

24909.24 22844.02

4340

Total system

Geothermal+C Chiller-Boiler Geothermal+H

hillerBoiler

Summed total

% vs Baseline

Total system Total system energy

energy (MBtu) energy (MBtu) (MBtu

0.25

13202.87 8035.876

Differenc

1.04

-44.61

0.225

0.108

0.201

0.09

-1.8

4340

21660.21 19864.37 -1795.84